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1 Introduction

The MAHI Exo-II, shown in Figure 1, is a robotic exoskeleton designed for the rehabilitation of
the elbow and wrist joints. It features serially connected joints for elbow flexion/extension (E-
Flx/Ext) and forearm pronation/supination (F-Pro/Sup), and a parallel revolute-prismatic-spherical
mechanism that achieves wrist flexion/extension (W-Flx/Ext) and wrist radial/ulnar deviation (W-
Rad/Uln).

Figure 1: MAHI Exo-II as worn by a user.

Several iterations of wrist exoskeleton design preceded the MAHI Exo-II. The original MAHI
exoskeleton design was presented by Gupta and O’Malley [3], along with thorough discussion of the
specific design considerations for the device. It is composed of a revolute joint at the forearm for
pronation and supination, and a 3-RPS (revolute-prismatic-spherical) serial-in-parallel wrist. The
device was then redesigned [5] to address limitations of the original version, and this new design was
called the RiceWrist. Details of the design, kinematics, and task space control of the wrist platform,
which corresponds to anatomical joint space control of the human wrist, can be found in [4].

The most current design iteration by Pehlivan et al. [6] includes another serial revolute joint
at the base of the RiceWrist aligned with the elbow. French et al. performed a series of system
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identification tasks characterizing the MAHI Exo-II [1], some results of which are listed in Tables 1,2,
and 4. (Range of motion is abbreviated as ROM. Bandwidth is abbreviated as BW.)

The MAHI Exo-II is equipped with high-resolution optical encoders at each of the motors, from
which we can extract position and velocity of all degrees of freedom. Commanded currents to
the actuators can also be used to estimate the torque delivered to the human joints by the robot,
though static friction in the robot joints and misalignment between the human and exoskeleton can
be significant sources of error in this estimate.

The height and shoulder abduction angle of the MAHI-Exo II can be adjusted and locked to keep
both shoulders at equal heights and to keep the shoulder of the user’s active arm in the scapular
plane (30◦ from the frontal plane) for maximal comfort. The wrist handle location can be positioned
and locked to provide a maximum range of motion while the user holds it in a natural grip. The
MAHI Exo-II is also equipped with an adjustable counterweight for passive gravity compensation
of the elbow joint. The exoskeleton can easily be configured for use with the left or right arm,
and the user can be strapped into padded cuffs at the upper forearm and upper arm. All of these
passive joints can be considered additional degrees of freedom of the robot, which can be useful to
define within the kinematic model—especially when considering a connected skeletal model, as in
OpenSim.

Table 1: MAHI Exo-II ROM and Torque Output [1]

Joint ROM Torque
(deg) (N m)

E-Flx/Ext 90 7.35

F-Pro/Sup 180 2.75

W-Flx/Ext 65 1.45

W-Rad/Uln 63 1.45

Table 2: MAHI Exo-II Dynamic Model Parameter Estimation [1]

Joint Static Friction Inertia Viscous Friction
(N m) (kg m2) (N M s/rad)

E-Flx/Ext 0.9491 0.2713 0.1215

F-Pro/Sup 0.139 0.0257 0.0167

W-Flx/Ext 0.109 0.002 0.0283

W-Rad/Uln 0.112 0.0033 0.0225

2 Kinematics

The MAHI Exo-II can be conveniently divided into its proximal, rotary degrees of freedom (DoFs),
aligned with the elbow and forearm, and its distal degrees of freedom articulating the writs. The
proximal joints are in a serial RR configuration, while the distal joints compose the revolute-
prismatic-serial (RPS) mechanism with 3 independent DoFs.

The kinematics presented here do not strictly follow the Denavit-Hartenburg (DH) convention but
instead focus on compatibility with kinematic descriptions used in certain software (e.g. OpenSim),
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Table 3: MAHI Exo-II Closed-loop Control [1]

Joint Pos. BW
(Hz)

E-Flx/Ext 2.8

F-Pro/Sup 4.2

W-Flx/Ext 13.3

W-Rad/Uln 10.6

compactness of representation, and handling the complexity of the RPS parallel mechanism. See
Table 5 for a list of the values used for the kinematic parameters described in this section.

The following table shows the conventions for angles on the MEII

Table 4: MAHI Exo-II Closed-loop Control [1]

Joint -Extreme (value) +Extreme (value)

E-Flx/Ext Full Extension (−90◦) Flexed 90◦ (0◦)

F-Pro/Sup Supination (−90◦) Pronation (+90◦)

W-Flx/Ext Extension (−30◦?) Flexion (+30◦?)

W-Rad/Uln Ulnar Deviation (−30◦?) Radial Deviation (+30◦?)

2.1 Proximal Serial Joints

The following transformation matrices determine the kinematics of the proximal part of the MAHI
Exo-II, Figure 2. The kinematic chain they describe is all serially connected.

The first transformation matrix, 0
1T , shows the placement of the MAHI Exo-II, where q2 and

q3 are the robot base x and z locations respectively, and q1 is the rotation about the y axis. This
places the origin of this coordinate frame at the bottom of the robot support structure, relative to
some world Frame 0 that can be thought of as being attached to the user, their seat, or any other
reference point.

0
1T =


c1 0 −s1 c1q2 + s1q3
0 1 0 −a0
s1 0 c1 c1q3 − s1q2
0 0 0 1


The second transformation matrix, 1

2T , represents the vertical translation of the slide on the
robot support structure by general coordinate q4.

1
2T =


1 0 0 0
0 1 0 q4
0 0 1 0
0 0 0 1


The third transformation matrix, 2

3T , represents the rotation of the exoskeleton with respect to
the mounting block that it connects to, and it is associated with shoulder abduction/adduction. This
coordinate, q5, is changed by loosening the the nut which connects the exoskeleton to the mounting

3



Figure 2: Coordinate frames and parameters shown from the world frame to the forearm.

block and tightening it when it is at its appropriate subject-specific location. The dimension d5
represents the distance between the center of the bearing sliders on the linear rail and the closest
face of the exoskeleton that rotates with q5.

2
3T =


1 0 0 d1
0 c5 −s5 0
0 s5 c5 0
0 0 0 1


The fourth transformation matrix, 3

4T , represents the rotation of the elbow with respect to the
previous portion of the exoskeleton. The elbow rotation is represented by general coordinate q6
along the z axis. Dimensions a2 and a3 represent the distances between O3 and O4 in directions ~x3
and −~y3 respectively.

3
4T =


c6 −s6 0 a2
s6 c6 0 −a3
0 0 1 0
0 0 0 1


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The transformation matrix, 4
4′T , represents the placement of the counterweight on the exoskele-

ton. The counterweight translation is represented by general coordinate q7 along the ~x4 axis. Dimen-
sions a41 and a42 represent the distances between O4 and O4′ in directions −~x4 and ~z4 respectively.

4
4′T =


1 0 0 −a41 − q7
0 1 0 0
0 0 1 a42
0 0 0 1


The transformation matrix 4

5T represents the rotation of the forearm using general coordinate q8.
The dimension a4 represents the distance between the elbow rotation mechanism and the forearm
rotation mechanism in the ~x4 direction.

4
5T =


1 0 0 a4
0 c8 −s8 0
0 s8 c8 0
0 0 0 1


The forearm cuff that serves as a physical interface between the exoskeleton and the user is

attached to Frame 5 of the kinematic model.

2.2 Distal RPS Mechanism

This section describes the kinematics of the distal portion of the robot, including 3-DoF revolute-
prismatic-serial (RPS) mechanism, Figure 3. It is a parallel mechanism that enables the desired
anatomical rotations of wrist flexion-extension and wrist radial-ulnar deviation to be performed
with actuators that are further from the anatomical joints, reducing overall weight in that area.
There is also a third degree of freedom that allows for exoskeleton alignment with different arm
sizes.

The kinematic solution for the RPS mechanism arises from an iterative method for solving closed-
chain mechanisms explained in [2]. The first step is to define the constraints that govern this system.
There are 12 generalized coordinates that can fully describe the positions and orientations of the
rigid bodies, given the inherent constraints of the single-DoF revolute and prismatic joints. Each
of the 3 linear rails is able to rotate in 1 dimension and translate in 1 dimension (3× 2 = 6 DoFs)
and the wrist ring is able to rotate and translate in 3 dimensions (6 DoFs). We will represent the
rotational DoF of each of the rails as θi, i ∈ [1, 2, 3], and each translation DoF (occurring serially after
rotation) as li, i ∈ [1, 2, 3]. The location of the center of the wrist wring is defined by coordinates
[xc, yc, zc], and the orientation is defined by Euler rotations of α about the y-axis, β about the z-axis,
and γ about the x-axis with respect to coordinate Frame 5.

In this system, there are 9 constraints that must be met in order for the system to be kinematically
correct. Those constraints are defined by three paths that begin at the origin of coordinate Frame
5, travel to the forearm ring, along the linear rail to the wrist ring, to the center of the wrist ring,
and back to the origin of coordinate Frame 5. That path is described by equation 1.

~φi = 5~ri + 5~li − 5R13
13~bi − 5 ~O13 = ~0 (1)

Each portion of the equation is specified below. 5~ri specifies the location of Ri represented in
coordinate Frame 5 as specified in Figure 4.

5r1 =

 0
Rcα5 − a56sα5

Rcα5 + a56sα5


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Figure 3: Definitions of coordinate frames and parameters for the RPS mechanism.

5r2 =

 0

Rcα
′

5 − a56sα
′

5

Rcα
′

5 + a56sα
′

5


5r3 =

 0

Rcα
′′

5 − a56sα
′′

5

Rcα
′′

5 + a56sα
′′

5


5~li specifies the vector from Ri to Bi represented in coordinate Frame 5 as specified in Figure 4.

5~l1 =

 l1sθ1
−l1cα5cθ1
−l1cα5sθ1


5~l2 =

 l2sθ2
−l2cα

′

5cθ2
−l2cα

′

5sθ2


5~l3 =

 l3sθ3
−l3cα

′′

5 cθ3
−l3cα

′′

5 sθ3


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Figure 4: Definitions of coordinate frames and parameters for the forearm ring of the RPS mecha-
nism.

5~bi specifies the vector from the origin of coordinate Frame 13 to bi represented in coordinate
Frame 13 as specified in Figure 4.

13~b1 =

 0
rcα13

rsα13


13~b2 =

 0

rcα
′

13

rsα
′

13


13~b3 =

 0

rcα
′′

13

rsα
′′

13


5O13 specifies the vector from the origin of coordinate Frame 5 (the center of the forearm ring)

to the origin of coordinate Frame 13 (the center of the wrist ring) represented in coordinate Frame
5.

5 ~O13 =
[
xc yc zc

]ᵀ
(2)
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5R13 specifies the Euler angle rotations from coordinate Frame 5 to the coordinate Frame 13, which
is aligned with the handle parallel to ~y13. (~y13 is not pointing to B1.)

5R13 = RY (α)RZ(β)RX(γ) (3)

Based on these equations, there are 12 kinematic variables to be found, defined as:

Table 5: Kinematic Parameter Values

Parameter Value Units

a0 0.5 m

a1 0.0604774 m

a2 0.13335 m

a3 0.0762 m

a4 0.159385 m

a5 0.0268986 m

a6 0.027282 m

R 0.1044956 m

r 0.052881745 m

α5 0.094516665 rad

α12
20π
180 rad

α13
5π
180 rad

a56 a5 − a6 m

α′5 α5 − 2π
3 rad

α′′5 α5 + 2π
3 rad

α′13 α13 − 2π
3 rad

α′′13 α13 + 2π
3 rad

a7 0.018086622 m

a8 0.049692586 m

a9 0.0381 m

a10 0.062809158 m

a41 0.1143 m

a42 0.24837205 m

q′ =
[
θ1 θ2 θ3 l1 l2 l3 α β γ xc yc zc

]ᵀ
(4)

The 3-D constraint equations for the 3 closed paths of the mechanism are now arranged into a single
column vector:

φ(q′) =
[
φᵀ1 φᵀ2 φᵀ3

]ᵀ
∈ R9×1 (5)
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Now, we must choose which variables are to be controlled or specified independently, and the
remaining 9 variables will be dependent on them. To do this mathematically, we define an indexing
function α(·), which takes as input the full variable set and returns the three selected independent
variables. In our case, this can just be accomplished by multiplying our vector of kinematics variables,
q′ (12×1) by a 12×12 with three 1s on the diagonal corresponding to the chosen independent variables
and 0s for all other elements.

q∗ = α(q′) (6)

At this point it is helpful to remember the dimensions of the variables we are working with.

q′ ∈ R12, q∗ ∈ R3 (7)

For our purposes, we typically want to set desired values for α, β, and xc, variables which
represent wrist flexion/extension, radial/ulnar deviation, and handle translation from the elbow,
respectively. This means that α(q′) = [α, β, xc]

T . Now we define ψ(q′) and ψ̄(q′, q∗) as shown below.
Importantly, q∗ in Eq. 9 is the vector of the three independent variables assigned the specific values

of interest. We additionally define the partial derivative of ψ as ψq′ ,
∂ψ(q′)
∂q′ ∈ R12×12.

ψ(q′) =

φ(q′)

α(q′)

 ∈ R12×1 (8)

ψ̄(q′, q∗) =

φ(q′)

α(q′)

−
 0

q∗

 ∈ R12×1 (9)

Lemma II.1 from [2] states that for a set of desired independent values q∗ (while not in a singular
configuration) where ψ̄(q′, q∗) = 0—meaning the constraints are met. This means that for any q∗

there exists a unique q′ such that
q′ = σ(q∗) ∈ R3×1 (10)

Further,
q̇′ = ρ∗(q′) q̇∗ (11)

where

ρ∗(q′) = ψ−1q′ (q′)

0(9×3)

I(3×3)

 ∈ R3×12 (12)

A numerical iterative algorithm such as the Newton-Raphson method can be used to find the
solution q′ = σ(q∗). To use Newton-Raphson, first we initialize a vector of our variables q′0. Then,
a step is taken along the gradient in the direction of the zero of the function until ψ̄ is acceptably
close to 0.

q′k = q′k−1 − ψ̄q′(q′k−1)−1ψ̄(q′k−1) (13)

The expression for ρ∗(q′) is derived from the previous constraint equations:φ(q′)

α(q′)

 =

 0

q∗

 (14)

We then take the time derivative:

d

dt

φ(q′)

α(q′)

 =
d

dt

 0

q∗

 (15)
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ψq′(q
′)q̇′ =

09×3

I3×3

 q̇ → ρ∗(q′) = ψ−1q′

09×3

I3×3

 (16)

yielding an expression for ρ∗(q′).
Finally, the transformation matrix 13

14T represents the positioning of the handle. The handle
translation is represented by the general coordinate q18 along the ~x13 axis. Dimension a9 represents
the distance between O13 and O14 in the ~y13 direction, and dimension a10 is an offset added to q18
in the ~x13 direction to reach the handle position at O14.

13
14T =


1 0 0 a10 + q18

0 1 0 −a9
0 0 1 0

0 0 0 1


2.3 Full Serial Representation

At times, it is useful and/or necessary to describe the parallel mechanism with serial joint coordi-
nates. This is the case for the robot to be modeled in OpenSim. Therefore, a serial representation of
the distal part of the device is described here, where two serial kinematic chains describe the paths
to the ends of two of the linear rails and one serial kinematic chain describes the path from the top
linear rail, through the spherical joint, to the wrist ring and handle.

Continuing from the end of the proximal section, Frame 5, at the forearm wring, the transfor-
mation matrix 5

6T represents the rotation of the linear slider 1 relative to the forearm ring about
the ~z6 axis. Frame 6 is rotated by the fixed parameter α5 about ~x5, translated by the forearm ring
radius R along the ~y direction after this rotation, and then translated by a5 along ~z6.

5
6T =


c9 −s9 0 0

cα5s9 cα5c9 −sα5 Rcα5 − a5sα5

sα5s9 sα5c9 cα5 Rsα5 + a5cα5

0 0 0 1


The transformation matrices 5

7T and 5
8T represent the rotation of linear sliders 2 and 3 relative

to the forearm ring about their respective ~z axes. Their function is identical to that of 5
6T , with the

only difference being the initial rotation of α′ and α′′ instead of α. These angles space the three
frames equally around the forearm ring.

5
7T =


c10 −s10 0 0

cα′5s10 cα′5c10 −sα′5 Rcα′5 − a5sα′5
sα′5s10 sα′5c10 cα′5 Rsα′5 + a5cα

′
5

0 0 0 1


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5
8T =


c11 −s11 0 0

cα′′5s11 cα′′5c11 −sα′′5 Rcα′′5 − a5sα′′5
sα′′5s11 sα′′5c11 cα′′5 Rsα′′5 + a5cα

′′
5

0 0 0 1


The transformation matrix 6

9T represents the translation of linear rail 1 relative to linear slider
in the ~x6 direction, where the origin of Frame 9 has been translated by a6 in the −~z6 direction.
Similarly, transformation matrices 7

10T and 8
11T represent the translation of linear rails 2 and 3

relative to linear sliders 2 and 3 respectively, with the same translation by a6 in their frame’s −~z
direction.

6
9T =


0 0 0 q12

0 1 0 0

0 0 1 −a6
0 0 0 1



7
10T =


0 0 0 q13

0 1 0 0

0 0 1 −a6
0 0 0 1



8
11T =


0 0 0 q14

0 1 0 0

0 0 1 −a6
0 0 0 1


The remaining transforms handle the serial chain from linear rail 1 to the wrist ring and handle.

Thus, this serial representation does not describe all three of the paths from the forearm ring to the
handle, but instead, it covers what is necessary to fully specify the position and orientation of the
entire exoskeleton assembly.

The transformation matrix 9
12T represents the 3-D rotation of the wrist ring relative to linear

rail 1 about the center of the spherical bearing connecting them. The relative orientation of the
ring is described in terms of X-Y-Z Euler angles as successive rotations, meaning their order of
multiplication is left to right. Therefore, the rotational part of this transformation can be composed
as

9
12R = RX(q15)RY (q16)RZ(q17).

However, the rotation matrix 5
13R is already given by the coordinates defined in the parallel

representation: α, β, and γ:
5
13R = RY (α)RZ(β)RX(γ).

Working backward, the rotation matrix 12
13R accounts for the difference in orientation between the

handle and the triangle constructed by connecting the spherical bearings Bi (Figure 3).

12
13R = RZ(α12)RX(−α13).
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Taking the rotational part of the transformation matrix 5
9T = 5

6T
6
9T ,

5
9R = RX(α5)RZ(q9),

we can solve for the rotation matrix 9
12R in terms of known quantities:

9
12R = 5

9R
ᵀ 5

13R
12
13R

ᵀ.

The three Euler angles q15, q16, and q17 can be found from the elements of this matrix as follows:

q15 = atan2(−r(2, 3), r(3, 3))

q16 = atan2(r(1, 3),
√

1− r2(1, 3))

q17 = atan2(−r(1, 2), r(1, 1)),

where r(i, j) is the element of 9
12R in the ith row and the jth column.

The transformation matrix 9
12T is a pure 3-dimensional rotation corresponding to the spherical

bearing at B1.

9
12T =


c16c17 −c16s17 s16 0

c15s17 + c17s15s16 c15c17 − s15s16s17 −c16s15 0

s15s17 − c15c17s16 c17s15 + c15s16s17 c15c16 0

0 0 0 1


The transformation matrix 12

13T is a fixed transformation (containing no generalized coordinates
qi), that relates the position and orientation of Frame 12 to Frame 13, and is introduced to keep the
transformation matrices from becoming overly complicated.

12
13T =


cα12 −sα12cα13 −sα12sα13 a7

sα12 cα12cα13 cα12sα13 −a8
0 −sα13 cα13 0

0 0 0 1


Finally, as presented in the previous subsection, the transformation matrix, 13

14T , represents the
positioning of the handle. The handle translation is represented by the general coordinate q18 along
the ~x13 axis. Dimension a9 represents the distance between O13 and O14 in the ~y13 direction, and
dimension a10 is an offset added to q18 in the ~x13 direction to reach the handle position at O14.

13
14T =


1 0 0 a10 + q18

0 1 0 −a9
0 0 1 0

0 0 0 1


The full list of generalized coordinates and their definitions in the serial representation is shown

in Table 6, and the definitions of the coordinate frames are listed in Table 7.
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Table 6: Generalized Coordinate Assignment

Gen. Coord. Description

q1 cart rotation about world y

q2 cart translation in world x

q3 cart translation in world y

q4 cart translation in world z

q5 exo shoulder abduction

q6 exo elbow flexion

q7 counterweight translation

q8 exo forearm pronation

q9 (θ1) exo slider 1 rotation

q10 (θ2) exo slider 2 rotation

q11 (θ3) exo slider 3 rotation

q12 (l1) exo rail 1 translation

q13 (l2) exo rail 2 translation

q14 (l3) exo rail 3 translation

q15 exo spherical bearing 1 roll

q16 exo spherical bearing 1 yaw

q17 exo spherical bearing 1 pitch

q18 exo handle position

3 Statics

3.1 Distal RPS Mechanism

External virtual work done by a closed kinematic chain is defined by

δw = −(τ ′)ᵀq̇′ (17)

where τ ′ is the n′-by-1 generalized external torque vector for a system described by n′ generalized
coordinates with n∗ degrees of freedom and n′ − n∗ constraints. Under static equilibrium, δw = 0.

So, choosing n∗ = 3 and n′ = 12 for the MAHI Exo-II, we denote the independent generalized
coordinates with a star ( ∗ ) and the dependent generalized coordinates with a bar ( ¯ ). The gen-
eralized torques are denoted to match the corresponding generalized coordinates, though for the
torques, τ∗ is now dependent on τ̄ .

q∗ ∈ R3, q′ ∈ R12, q̄ = q′\q∗ ∈ R9

τ∗ ∈ R3, τ ′ ∈ R12, τ̄ = τ ′\τ∗ ∈ R9,

using set notation.
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Table 7: Coordinate Frame Descriptions

Frame Description

0 world frame aligned with the human torso

1 base of the robot support linear bearing

2 exo base block

3 exo upper arm

4 exo forearm

4′ counterweight

5 exo wrist base

6 exo wrist slider 1

7 exo wrist slider 2

8 exo wrist slider 3

9 exo wrist rail 1

10 exo wrist rail 2

11 exo wrist rail 3

12 exo spherical bearing housing 1

13 exo wrist ring

14 exo handle

The generalized virtual displacements and torques in Eq. 17 can be separated into these subsets.
Under static conditions:

−(τ∗)ᵀδq∗ − (τ̄)ᵀδq̄ = 0. (18)

Making use of the previously defined mapping ρ(·) between the independent and dependent coordi-
nate velocities (Section 2), where the notation of ρ(·) (and its dimensions) has once again changed
to be consistent with this section and not the previous kinematics section:

q̇′ = ρ∗(q′) q̇∗, ˙̄q = ρ(q′) q̇∗, q̇′ = ˙̄q ∪ q̇∗. (19)

We use this relationship as a substitution in Eq. 18:

[(τ∗)ᵀ − (τ̄)ᵀρ(q′)]δq∗ = 0 (20)

In order to drop the δq∗ and say (τ∗)ᵀ − (τ̄)ᵀρ(q′) = 0, the virtual displacements δq∗ must be
independent. For the RPS mechanism, we know only n = 3 of the coordinates can be independent.
Therefore, we can say that τ∗ = ρ(q′)ᵀ τ̄ only for n = 3 torques in τ∗. The remaining n′ − n = 9
torques in τ̄ must be specified, but can be independent of each other. If they are not defined, then
they must be assumed to be zero in order to have a valid solution for the 3 dependent torques τ∗.

The established relationships between joint velocities and torques in the RPS parallel mechanism
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can be summarized as follows:

q∗ ∈ R3, q′ ∈ R12, q̄ = q′\q∗ ∈ R9

τ∗ ∈ R3, τ ′ ∈ R12, τ̄ = τ ′\τ∗ ∈ R9

q̇′ = ρ∗(q′) q̇∗, ˙̄q = ρ(q′) q̇∗, q̇′ = ˙̄q ∪ q̇∗

τ ′ = ρ̄ᵀ(q′) τ̄ , τ∗ = ρᵀ(q′)τ̄ , τ ′ = τ̄ ∪ τ∗

3.2 Proximal Serial Joints

4 Dynamics

Determination of the full equations of motion for the MAHI Exo-II is beyond the scope of this text;
however, the exact equations can be found computationally given the information provided in the
kinematics and statics sections, along with the inertial properties of the rigid bodies composing the
robot. More information on the dynamics of parallel mechanisms can also be found in [2].

For each of the coordinate frames associated with moving rigid bodies of the robot (including
bodies that are locked in place during normal operation), we have calculated the theoretical mass,
location of center of mass, and elements of the inertia tensor using an accurate SolidWorks model
that includes all known properties, as well as all fasteners and other peripheral parts present that
would affect inertial properties. All values are given with a precision of 8 digits after the decimal
point, in standard SI units. Mass is given in kg. Position of the center of mass in m is expressed
in the moving body frame. The elements of the inertia tensor (kg m2) are arranged in a symmetric
two-dimensional matrix, calculated at the center of mass and oriented in the moving body frame.

Frame 3, Exo Upper Arm:

m3 = 3.42222721, 3 ~P3,COM =


0.04238470

−0.07466000

−0.00583083



3I3 =


0.03278369 −0.00882058 −0.00039780

−0.00882058 0.02600980 0.00135900

−0.00039780 0.00135900 0.04034464



Frame 4, Exo Forearm:

m4 = 1.75487178, 4 ~P4,COM =


0.05408420

−0.03777320

0.00297689



4I4 =


0.01371556 −0.00398585 −0.00095332

−0.00398585 0.02047318 0.00071175

−0.00095332 0.00071175 0.01731919



Frame 4′, Exo Counterweight:
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m4′ = 5.35239000, 4′ ~P4′,COM =


0

0

0



4′I4′ =


0.00700388 0 0

0 0.00700388 0

0 0 0.01317901



Frame 5, Exo Wrist Base:

m5 = 1.45613142, 5 ~P5,COM =


−0.00401306

−0.00116828

−0.00011279



5I5 =


0.01747099 0.00006494 0.00000848

0.00006494 0.00904374 −0.00000851

0.00000848 −0.00000851 0.00895693



Frame 6, Exo Wrist Slider 1:

m6 = 0.05994136, 6 ~P6,COM =


0

0

−0.00868910



6I6 =


0.00000961 0 0

0 0.00000989 0

0 0 0.00000890



Frame 7, Exo Wrist Slider 2:

m7 = 0.05994136, 7 ~P7,COM =


0

0

−0.00868910



7I7 =


0.00000961 0 0

0 0.00000989 0

0 0 0.00000890


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Frame 8, Exo Wrist Slider 3:

m8 = 0.05994136, 8 ~P8,COM =


0

0

−0.00868910



8I8 =


0.00000961 0 0

0 0.00000989 0

0 0 0.00000890



Frame 9, Exo Wrist Rail 1:

m9 = 0.14820004, 9 ~P9,COM =


−0.08803880

0.00000222

0.00949584



9I9 =


0.00002001 −0.00000005 −0.00012515

−0.00000005 0.00146169 0

−0.00012515 0 0.00144578



Frame 10, Exo Wrist Rail 2:

m10 = 0.14820004, 10 ~P10,COM =


−0.08803880

0.00000222

0.00949584



10I10 =


0.00002001 −0.00000005 −0.00012515

−0.00000005 0.00146169 0

−0.00012515 0 0.00144578



Frame 11, Exo Wrist Rail 3:

m11 = 0.14820004, 11 ~P11,COM =


−0.08803880

0.00000222

0.00949584



11I11 =


0.00002001 −0.00000005 −0.00012515

−0.00000005 0.00146169 0

−0.00012515 0 0.00144578


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ij a(ij) µij σij γij bij αij dij θij rij

11 (1) 0 (0) 1 0 0 0 0 0 q1 0

21 (2) 1 (1) 1 0 0 0 π/2 0 q2 + α5 a4

31 (3) 21 (2) 0 0 0 0 −π/2 R q31 a56

32 (4) 31 (3) 1 1 0 0 π/2 0 0 q32

41 (5) 21 (2) 0 0 2π/3 0 −π/2 R q41 a56

42 (6) 41 (5) 1 1 0 0 π/2 0 0 q42

51 (7) 21 (2) 0 0 4π/3 0 −π/2 R q51 a56

52 (8) 51 (7) 1 1 0 0 π/2 0 0 q52

Table 8: Caption

Frame 13, Exo Wrist Ring:

m13 = 0.20360330, 13 ~P13,COM =


0.04604890

−0.05986810

−0.00647995



13I13 =


0.00108391 −0.00064377 −0.00000844

−0.00064377 0.00082063 0.00002664

−0.00000844 0.00002664 0.00158304



Frame 14, Exo Handle:

m14 = 0.16125801, 14~P14,COM =


0

0.06844240

0



14I14 =


0.00103949 0 0

0 0.00002597 0

0 0 0.00103949


Modified DH Parameters for parallel mechanism
µj = 1 if joint is active
µj = 0 if joint is passive
σi = 0 if joint i is a R joint
σi = 1 if joint i is a P joint
σ̄i = 1− σi
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