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Abstract—Stroke and spinal cord injury are becoming ever
more prevalent in the United States. Recent research has shown
that rehabilitation robots have the potential to positively impact
the rehabilitation process by providing a platform for repetition-
based movement therapy. To advance the field, future research di-
rections for robotic rehabilitation are focused on advanced model-
based control algorithms, and the combination of robotics with
cutting-edge neuromodulation technologies. These approaches
necessitate devices that not only feature kinematic and dynamic
properties well-suited for model-based control, but also require
devices that allow for easy placement of sensors and electrodes
on the limb when inserted in the robot. With these design goals
in mind, we present the MAHI Open Exoskeleton (MOE), a
four degree of freedom robot with an open mechanical structure
and simplified dynamics, combined with open-source software,
that together lay the groundwork for advanced model-based
control. The dynamic properties of each joint were characterized
and compared against other recently developed rehabilitation
robots. Open-source software was developed for the robot, which
provides users with both low-level and application-level interfaces
to implement a variety of control strategies. Dynamic equations
were developed and implemented into a real-time simulation with
a visualization, including a seamless interface to the developed
software library. Impedance control and model predictive control
were implemented and compared to the simulation, proving the
value of the new designs.

Index Terms—Medical and rehabilitation robotics, system
identification, mechanisms, design, modeling & control, real-time
and hardware-in-the-loop simulation.

I. INTRODUCTION

Research has predicted that by 2030, 3.88% of the pop-
ulation older than 18 will have had a stroke [1]. In that
same time frame, annual stroke-related medical costs will
rise to $184.13 billion in the United States, up from $71.55
billion in 2012. Additionally, there are 291,000 people living
with spinal cord injuries in the U.S. [2], with many of them
requiring assistance when performing activities of daily living
(ADLs). The pervasiveness of stroke and SCI, along with other
conditions resulting in motor impairment, has spurred research
into rehabilitative and assistive technologies that can be used to
regain or supplement motor function following such injuries.

Using rehabilitation robots to provide repetition-based ther-
apy has shown to be effective at restoring some upper limb
motor function following a stroke or spinal cord injury [3],
[4]. Robots have properties that make them ideal for the
rehabilitation process, such as being able to perform repetitive
motions in a very accurate and precise manner. Still, clinical
outcomes of robot-mediated upper limb rehabilitation have not
significantly surpassed what is achievable with traditional ther-
apeutic interventions for individuals with stroke [5]. Further,

Fig. 1. The MAHI Open Exoskeleton (MOE) is shown with a user’s arm
placed for rehabilitation or assistive applications. The overlaid coordinate
frames show the axes of rotation for each joint, with elbow flexion/Extension
(EFE) in purple, forearm pronation/supination (FPS) in green, wrist flex-
ion/extension (WFE) in blue, and wrist radial/ulnar deviation (WRU) in
orange. The black dot on the elbow indicates where the FPS joint meets
the EFE joint, and the black dot on the wrist indicates the interaction of the
axes of rotation of the FPS, WFE, and WRU joints.

few large scale studies have been conducted for individuals
with SCI, though robot-assisted interventions have been shown
to be safe and feasible for this population [6].

Research has shown that it is important for the patient to
be actively involved in rehabilitation activities, rather than
being passively carried through motions by the robot [3], [7].
There have been several techniques implemented to promote
participant engagement, including gamification of rehabilita-
tion [8] and assist-as-needed control algorithms [9]. In these
scenarios, it is useful, and sometimes necessary, to have an
accurate dynamic model of the effort contributions of both
the robot and the patient. Consider the approach of using
neuromusculoskeletal modeling with myoelectrical sensors to
understand how much effort the patient can provide, and to
supplement the rest of the required effort through the robot
[10]. In order to do this effectively, a model of both the human
and the robot are necessary to truly benefit the rehabilitation
process. Having a model of the robot is also useful for
functional assistance by allowing for collaboration between the
robot and other actuators, such as surface functional electrical
stimulation, so that the load can be efficiently shared [11].

Another promising future direction is to combine robotic
rehabilitation and other interventions, such as neuromodula-
tion [12]–[14]. Combination therapies by their very nature
require the physical integration of hardware such as my-
oelectric sensors [15], neuromuscular electrical stimulation
(NMES) electrodes [16], and brain machine interface hardware
components [17], within the work volume of the robot. To



Fig. 2. The MOE simulation provides an implementation of the dynamic equations, along with a user interface to visualize the output of the robot. In this
use case, a GUI is being used to tune the PD gains for impedance control on each of the joints while tracking setpoints input to the GUI.

be able to combine these technologies effectively, the robot
should be designed such that the same areas of the body that
are being rehabilitated are also accessible for the placement
of other sensors, electrodes, and devices necessary for such
combinatorial approaches to rehabilitation.

When developing new robotic hardware, dynamic models,
and control algorithms, particularly during a global pandemic,
computer simulations can be a valuable tool to enable research
progress. Not only do simulation environments allow design-
ers to develop and test experiment code and novel control
algorithms remotely, they also provide a safe environment
to develop models and algorithms without endangering the
robot or a user. When designed well, the code and algo-
rithms developed in the simulation environment can easily and
quickly be ported to experimental hardware, streamlining the
development process. Such processes also emphasize safety,
since tuning control algorithms often involves significant trial
and error to adjust gains and reconfigure target parameters to
achieve the desired result.

In this paper, we present a new kinematic design for an
upper limb robotic exoskeleton, the MAHI Open Exoskeleton
(MOE), designed to deliver rehabilitation following neuro-
logical injury. The robot’s serial mechanism, described in
Section II, is well-suited for therapeutic interventions that
require additional sensors and electrodes to be affixed to the
limb, given the ease of insertion of the limb in the robot.
In Section III-A, we describe the methods and results of
experimental characterization of MOE compared with other
upper limb rehabilitation robots. Section III-B presents the
explicit dynamic equations of MOE, along with a description
of the real-time dynamic simulation environment that was
created to facilitate our development process. The software
implementation is presented in Section IV. An example con-
trol implementation showing standard impedance control and
model predictive control is described in Section V. We discuss

the contributions of this paper and future directions in Section
VI. We conclude in Section VII.

II. THE MAHI OPEN EXOSKELETON (MOE)
We present the design of the MAHI Open Exoskeleton, a

four degree-of-freedom (DoF) exoskeleton robot for the upper
limb. This device was developed for robotic rehabilitation
interventions that require model-based control methods, or
approaches that require the robot to work in combination with
neuromodulation systems. Based on our experiences with prior
robot designs like the MAHI Exo-II and OpenWrist, we iden-
tified the following design criteria to drive our development
of MOE:

• Mechanism presents minimal barriers when donning and
doffing for users with motor impairment, and facilitates
easy placement of sensors and electrodes necessary for
combinatorial interventions

• Kinematic design enables computationally simple deriva-
tion of closed form dynamic equations that can be used
to develop a dynamic simulation environment to safely
design and test novel control algorithms

A. Mechanical Design

The MAHI Open Exoskeleton (MOE), shown in Fig. 1, is
a serial 4 DoF upper limb exoskeleton robot consisting of
four revolute joints that correspond to the four anatomical
joints spanning the elbow through the wrist. The structure of
MOE is open, allowing the robot to be donned simply by
lowering the arm into the robot, rather than inserting the limb
through circular components found in some exoskeletons [21].
All four joints are driven by capstan-cable drives, allowing for
backdrivability while minimizing backlash. Range of motion
and torque output are presented for MOE and other relevant
robots in Table I.

The most proximal joint moves the elbow through the
flexion and extension motion. The elbow of the user is placed



TABLE I
MOE CAPABILITIES COMPARED WITH ADL REQUIREMENTS AND OTHER REHABILITATION DEVICES

(MIT-MANUS [18], IIT WRIST ROBOT [19], WRIST GIMBAL [20], MAHI EXO-II [21], RICEWRIST-S [22], AND OPENWRIST [23])

Range of Motion [deg] Max Continuous Torque [Nm]
Joint ADL MIT IIT WG ME-II RW-S OW MOE ADL MIT IIT WG ME-II RW-S OW MOE

EFE 150 - - - 90 - - 102 3.5 - - - 7.35 - - 6.59
FPS 150 140 160 180 180 180 170 180 0.06 1.85 2.77 2.87 2.75 1.69 3.50 3.55
WFE 115 120 144 180 65 130 135 131 0.35 1.43 1.53 1.77 1.45 3.37 3.60 3.63
WRU 70 75 72 60 63 75 75 74 0.35 1.43 1.63 1.77 1.45 2.11 2.30 2.54

in the middle of the joint with the capstan located on one side
and a counterweight located on the other. The counterweight
offsets the weight of the other joints of the exoskeleton and the
arm of the user, easing the load on the elbow flexion/extension
motor. The location of the counterweight can be adjusted with
a discrete sliding mechanism. The second joint is attached
to the elbow joint underneath the joint axis allowing for
the arm to be lowered into the robot without having to
maneuver around robot components. There is a discrete sliding
mechanism between the first and second joints that accounts
for varying forearm lengths. When the screws are loose, the
joint slides to adjust for arm length and locks back into place
by tightening the screws. A set of three screws lock the passive
joint in place. The discrete locations of the screws that can be
tightened allows for modeling of MOE without needing to
accurately measure the location of the slider every time it is
changed. The design of MOE’s elbow joint is based heavily
on that of the MAHI Exo-II [21].

The forearm pronation/supination joint rotates along a curvi-
linear rail. The user can easily place their arm into MOE
through the opening in the rail, a significant improvement over
our prior design [21] that required the user to maneuver the
limb through a fully enclosed circular bearing. The axis of the
forearm pronation/supination joint intersects the elbow flexion
extension axis as well as the two wrist joint axes (see Fig. 1).
The curvilinear rail design is based on the pronation/supination
joint present in the OpenWrist [23].

The wrist flexion/extension joint rotates about an axis
perpendicular to the forearm pronation/supination axis. The
capstan for the wrist flexion/extension joint lies below the
arm of the user so the wrist can be lowered onto the joint
without having to navigate around any hardware components.
The parameter corresponding to the forearm length can be
adjusted and locked to ensure that the joint axis is aligned
with the anatomical wrist flexion/extension axis of the user.

In order to maximize the range of motion of the wrist
flexion/extension joint, the wrist radial/ulnar deviation joint
rotates along a set of three pulleys about which the driving
cable is wrapped. The cable is wrapped around the motor shaft
similar to the other DoFs, but is wrapped around three pulleys
before the capstan to increase the output transmission ratio.
This allows for a capstan with a smaller arc angle that does
not interfere with the rotation of the wrist flexion/extension
joint, while still maintaining high torque output.

In addition to the parameter to adjust forearm length,
MOE features two additional adjustable parameters to aid in

Fig. 3. The MOE PCB, with functional regions labeled. 1) Encoder pass
through, 2) Digital inputs and outputs to the chosen DAQ used for signal
processing, 3) Signal conditioning circuit between the motor controller and
motor output, 4) Electronic power stage, 5) ESCON motor controller, and 6)
Analog inputs and outputs

alignment between the robot and the user. The handle for
MOE is attached to the wrist radial/ulnar deviation joint with
a linear rail and bearing. When MOE is in use, this passive
DoF allows for small amounts of motion to account for any
discrepancies between anatomical and robotic joint axes in the
wrist. The last adjustable parameter is located above the elbow
flexion/extension joint that allows for changes in shoulder
abduction/adduction angle. Prior to use, this DoF can be set
in 15 degree increments, and locked with a set of two screws.
These screws are solely for locking purposes, as a large bolt
attaches MOE to the cart and bears the weight of MOE.

B. Electronics Design

The electronics subsystem consists of a power supply, a
Printed Circuit Board (PCB) with mounted motor controllers
and connecting interfaces, and an enclosure that houses these
components while providing the user with access to its com-
ponents and safety features.

A four layer board is used for the PCB, with the two internal
layers for grounding and two external layers for routing. The
high power motor signals are routed on the top while the rest
of the signals are routed on the bottom. The PCB contains four
isolated areas with separate common grounds: motor control,
encoder pass through, digital signals, and analog signals. All
grounding layers are tied together via connections to a thick
metal plate to which the PCB mounts. These design choices
reduce the cross talk between signals within the PCB and noise
radiated from the PCB.



TABLE II
DEVICE CHARACTERISTICS OF MOE COMPARED WITH THE MAHI EXO-II [21] AND THE OPENWRIST [23]

Inertia [kg ·m2] Viscous Coeff. [Nm·s
rad

] Kinetic Friction [Nm] Static Friction [Nm] Bandwidth [Hz]
Joint ME-II OW MOE ME-II OW MOE ME-II OW MOE ME-II OW MOE ME-II OW MOE

EFE 0.2713 - 0.2061 0.1215 - 0.0393 - - 0.1838 0.949 - 0.307 2.8 - 2.14

FPS 0.139 0.0305 0.0271 0.0167 0.0252 0.0691 - 0.1891 0.1572 0.139 0.2250 0.263 4.2 4.6 4.13

WFE 0.002 0.0119 0.0118 0.0283 0.0019 0.0068 - 0.0541 0.0996 0.109 0.0720 0.127 13.3 7.0 6.23

RU 0.0033 0.0038 0.0048 0.0225 0.0029 0.0025 - 0.1339 0.1685 0.112 0.1180 0.222 10.6 9.8 -

The layout of the PCB is shown in Fig. 3. The power supply
output is fed and filtered through region 4 of the PCB, which is
used to supply power to the motor drivers as seen in region 5.
The motor controllers receive input from the data acquisition
device (DAQ) in region 2 and run their output current through
a signal conditioning circuit in region 3, where it is fed to
the motors. Region 6 is used for analog inputs and outputs,
which include current command and current sensing. Region
1 is designed as a simple encoder pass through. This layout
allows all DAQ connections to run directly to the PCB rather
than the robot, allowing the user to choose a new DAQ without
having to change any wiring to the robot.

The motor controllers used in the PCB are ESCON Module
50/5 Servo Controllers (Maxon Motor), which are rated for
15 amps max and 5 amps continuous current at a nominal
voltage of 50 VDC. The controller operates using PWM output
at a rate of 53.6 kHz. To prevent the high frequency noise
typically present in PWM signals from being radiated by the
motor cables, cable shielding and a passive noise filter are
employed. The cable shielding is routed to the motor controller
ground plane to prevent ground plane cross talk with other
signals. The noise filter chosen is a 2 pole LC low-pass circuit
where the inductive element is a common/differential mode
choke that couples both motor outputs. The pass bands for the
common mode and differential mode were chosen to be 1kHz
and 5kHz respectively to remove the common mode noise and
the high frequency differential mode noise while leaving the
low frequency differential mode signal alone.

III. DYNAMIC CHARACTERIZATION AND SIMULATION

Experiments were performed to determine the inertia, vis-
cous damping, kinetic friction, and static friction of each of the
joints of MOE to support the development of a dynamic model,
and to allow for comparison with prior upper limb robot
designs. Closed-loop bandwidth was also determined. With
the results from these experiments, dynamic equations were
developed in Matlab and implemented in C++, and a GUI was
created to provide a visual representation of robot motion and
behavior. This environment allows for expedited development
of advanced control algorithms by allowing parameters to be
adjusted and refined before implementing on hardware.

A. System Characterization

In each test, the joint of interest was aligned such that the
joint axis was parallel to the direction of gravity. Methods
were employed as reported in prior related work for similar

robot designs [21]–[23]. Results of these characterization
experiments are presented in Fig. 4 and Table II.

For an underdamped system, the step response can be used
to obtain the dynamic properties via the logarithmic decrement
method. We extracted the inertia, viscous damping, and kinetic
friction components from the peaks and valleys of the step
response [24]. Each joint was commanded to a position step of
ten degrees centered about an angle chosen in the center of the
workspace. A proportional controller was used and assumed
to be the only source of stiffness in the system. No derivative
control was used to ensure that there was no software damping
present in the system. For each trial, three step responses were
recorded and the results over each trial were averaged.

Static friction was measured as a function of joint position.
For each joint, the commanded position consisted of no motion
for two seconds followed by a ramp to five degrees over two
seconds. A soft proportional derivative (PD) controller was
used so that the precise torque that initiated movement could
be identified. During the ramp input, the joint velocity was
measured and the commanded torque corresponding to the
time step immediately prior to non-zero velocity was defined
as the static friction torque at this position.

Since position based control is a common control strategy
for robotic exoskeletons, closed-loop position bandwidth was
measured as an additional performance metric for MOE. A
chirp input was used as the commanded position with a
magnitude of ten degrees for each joint. The input provided a
frequency sweep and the corresponding output magnitude was
used to determine the bandwidth. The controller used for this
was a critically damped PD controller.

B. Dynamic Simulation

Dynamic equations were generated using the iterative
Newton-Euler method after determining the appropriate DH
parameters for MOE using the method presented by Craig
[25], and are given in (1).

τ = M(θ)θ̈ + V (θ, θ̇) +G(θ) (1)

The relevant distance parameters and mass properties
needed for the dynamics were calculated using SOLID-
WORKS for parts that were machined, and recorded from
datasheets for parts that were not machined. In addition
to the inertias from the machined parts, the reflected rotor
inertias were added. The dynamic equations were generated
symbolically using Matlab, and then converted to C++ so
that they could be implemented for real-time simulation. The



Fig. 4. A) Static friction values across the workspace for all four joints of MOE. B) Frequency response plots (3dB attenuation cutoff shown). C) MOE, with
each joint colored according to the plot legend.

generated dynamic simulation solves the dynamic equations
at an average rate of < 40 microseconds on a Windows 10
system with a 3.4 GHz, 6th generation, Intel i7 processor. This
lends well for the model to be used in high-speed model-
based control that requires dynamic equation evaluations.
Because the dynamic equations are generated systematically
with values that only require the DH table, mass properties,
and part datasheets, this process can be easily adjusted for any
robot design for which these details are known.

In the C++ simulation, the derivatives of position and ve-
locity were calculated at each time step, then stepped forward
in time using trapezoidal integration. This was implemented
to run at a 1 kHz simulation rate, and an API was added
that allowed a separate program to start, stop, or reset the
simulation, as well as read the position and velocity, or set
torque values. The simulation was implemented using the
Eigen library [26] in C++, and a dynamic linking library was
created to load them into the Unity3D game engine.

To aid in the understanding of the dynamic simulation, a
visualization was created using the Unity3D game engine.
The physical models were exported from SOLIDWORKS and
imported into Unity3D so that they could be manipulated
based on the simulation results. The extra functionality of
stopping, starting, and resetting the simulation was made
accessible in Unity so that the end user could set the simulation
to the desired state.

Additionally, because all of the adjustable components on
the robot are only able to be changed to discrete values, this
finite set is available to select in the simulation, allowing
users to accurately adjust the dynamics with simple sliders.
This means that a user can estimate the required torques
and resulting movements of the robot for any implementation
intended for the real robot, regardless of desired configuration.

All that is needed to run the simulation is a Windows com-
puter and the executable for the simulation, along with some
configuration files. This extends the reach of MOE, making it

possible for anyone to safely test a control implementation for
MOE without needing the real robot. One example of this is
shown in Fig. 2, where the gains for impedance control were
tuned in the simulation before moving to the physical robot,
ensuring that the robot would safely operate when used.

IV. SOFTWARE IMPLEMENTATION

An important part of the MOE ecosystem is the open source
software (github.com/mahilab/MOE) that enables ease of use
at multiple interface levels. The software works with the phys-
ical robot and the simulation in an identical manner, without
any change to source code, allowing for easy prototyping of
control methods without requiring access to the physical robot.
In a significant change from previous robots developed by
our group, the software is now provided in C++ instead of
Matlab/Simulink. The interface enables the user to write code
at an application level or a low-level control interface.

The choice of C++ as the development language means
that the software is broadly available given access to a C++
compiler. This also enables access to a wide variety of heavily-
tooled ecosystems built for use with C++, including several
interfaces mentioned in Sections V-B and III-B. The predeces-
sors to this robot [21], [22] were developed using MATLAB’s
Simulink environment, which limited the use to only those that
have access to MATLAB’s proprietary software, and made it
difficult to use with some third party software.

This software framework has a built-in interface to both the
physical robot, as well as the simulation of MOE. Both low-
level and high-level interfaces are implemented so the user can
be sure that they know what to expect when moving to the
real robot, whether they are implementing a full experimental
protocol, or a specific piece of a novel control algorithm.
With this feature, software to test a control algorithm or
experimental setup can be written once, and can be used
in the exact same way for the simulation and the actual
robot. The user just needs to have the simulation running and



to implement a flag at runtime, and the simulation will be
properly interfaced. When doing this, the simulation, shown
in Fig. 2, immediately starts interacting with the executable as
if it were the physical system.

The C++ library is built to enable access to low-level signals
critical to the operation of the robot. The software interface
allows read access of the position, velocity, and sensed torque
output for each joint. If there is no hardware velocity esti-
mation available, software velocity estimation is implemented
using joint position data. Write access is provided for enabling
each joint, and for writing torque outputs to each of the
independent joints. With this low level control, it is possible
to create many kinds of specialized control schemes.

If the user of the software is more interested in using the
robot at an application level to provide general movements
and control, the user also has access to higher-level interfaces.
Pre-tuned PD controllers are available for general use that
will provide smooth and safe impedance control for use in
rehabilitation or assisstive applications. There are also features
that allow the robot to be backdriven, so that it can be used
as a passive data-collection device.

While the robot has many redundant safeties built into each
of its subsystems, the software also provides an additional level
of safety. Position limits, velocity limits, and torque limits are
available on each of the joints, as well as a DAQ watchdog
check with the currently implemented DAQ. These redundant
safeties are ideal for use in human-robot interaction cases
where safety is critical.

V. CONTROL IMPLEMENTATION

Impedance control is particularly relevant for rehabilitation
applications, due to its ability to allow cooperative interaction
between a user and the robot. Model Predictive Control
(MPC) is also of interest, since model-based control algorithms
are valuable when combining robots with other forms of
actuation, such as functional electrical stimulation, that can
be modeled. We implemented both impedance control and
MPC on MOE, in simulation and on the physical robot,
to demonstrate how our simulation pipeline can be used to
develop control algorithms. While only these two specific
controllers are demonstrated in this paper, the groundwork laid
out here provides a significant set of resources for extending
the abilities of MOE to use more advanced control algorithms.

A. Impedance Control

Impedance control was implemented with independent PD
controllers on each joint. To tune the PD controllers, the
simulation environment shown in Fig. 2 was used to find initial
gains, then to refine the gains by following various trajectories.
Using these constant gains, the resulting position and torque
values for MOE following a set of test sinusoidal waves are
shown in Fig. 5A and Fig. 5B respectively. The joint positions
are overlapping, showing the similar output behaviour; how-
ever, the joint torques do vary, especially for the elbow joint
when it is flexed. These results demonstrate how a researcher
can effectively tune the robot in the simulation and achieve

similar output results when porting the control algorithms to
the physical robot.

B. Model Predictive Control

The state variables for MOE were defined as all position
and velocity variables. The formulation of the MPC problem
was defined with the following inputs, x, and outputs, u.

x = [q1, q2, q3, q4, q̇1, q̇2, q̇3, q̇4]
T (2)

u = [τ1, τ2, τ3, τ4]
T (3)

where q1-q4 represent the rotation of each degree of freedom,
in the order of the serial connection of the robot, q̇1-q̇4
represent the rotational velocities of these degrees of freedom,
and τ1-τ4 represent the input torques of these DoFs.

The cost function that represents the optimal control prob-
lem is defined as

Jk =

N−1∑
i=1

(yk+i − rk+i)
TQ(yk+i − rk+i)

+ ∆uT
k+iR∆uk+i (4)

where k represents the current time step, N represents the
prediction horizon, rk+i is the reference input at time step
k + i, yk+i is the predicted robot state at time step k + i,
and ∆uk+i is the change in input between time k + i and
time k + i − 1. Q ∈ R8×8 and R ∈ R4×4 are positive
definite and diagonal weighting matrices that remain constant.
The predicted robot state at each of the time step, yk+i,
was calculated by linearizing the equations of motion about
the current state, and numerically integrating them using the
Forward Euler Method. The resulting outputs from one step
of an optimization uk, uk+1, . . . , uk+N were used as control
inputs to the robot until another optimization step finished.

A multiple shooting optimal control problem was created
from the dynamics and cost function using the C++ optimal
control framework, CasADi [27]. With the optimal control
problem formulated, a file was generated that was able to be
compiled and run at high speeds. This enabled us to use the
CasADi framework along with the IPOPT nonlinear solver
[28] to solve this optimal control problem in real-time.

For this implementation, the same trajectory was used as for
the impedance control implementation, although the algorithm
is abstracted to be used with any desired trajectory. The gains
for MPC were tuned in simulation, and then the same gains
were used to run the physical robot. The output trajectories and
resultant torques are shown in Fig. 5C and 5D respectively, for
the simulation and the physical robot. The results show that
the joint positions match reasonably well, while the torques
deviate some at the minimum and maximum positions.

VI. DISCUSSION

Rehabilitation robots have shown promise as a tool to
provide repetition-based upper-limb therapy following a stroke
or spinal cord injury, yet clinical studies using rehabilita-
tion robots have not produced clinical outcomes that are
significantly greater than those realized with standard of



Fig. 5. Position and torque results for multi-DoF impedance control and model predictive control following a trajectory of mixed-frequency sinusoids. Plots A
and B refer to the joint positions and corresponding joint torques resulting from impedance control. Plots C and D refer to the joint positions and corresponding
joint torques resulting from Model Predictive Control.

care interventions [5]. Researchers are now looking towards
advanced rehabilitation intervention methods that rely on the
integration of sensors and electrodes to enable neuromodula-
tion in conjunction with robotic interventions [12]–[14]. Other
advanced approaches require precise dynamic models of the
robot to facilitate accurate estimates of both robot and human
contributions to movements [10]. In this paper, we present
the kinematic design and dynamic modeling of MOE, a four
DoF upper limb exoskeleton robot for rehabilitation of the
upper limb following neurological injury. To facilitate the
development of advanced control algorithms to use with MOE,
a simulation of the robot was developed to provide a platform
to prototype and refine novel implementations, enabled by
the serial kinematic design. Explicit dynamic equations were
generated that were solved quickly in real-time, allowing
for integration into model-based computational algorithms.
This simulation helped our team to quickly develop gains
for impedance control, and weighting parameters for model
predictive control, which could be immediately run on the
physical robot for further fine-tuning. The results showed
similar position accuracy between the simulation and the
physical robot when the algorithms were developed on the
simulation, then transferred to the robot. This method has
already proven to be valuable to develop control strategies,
and allows for further development into new control areas.

Towards the goal of enabling MOE to collaborate with
other novel technologies, several modifications were made to
previous robot designs. The range of motion was increased rel-
ative to the MAHI Exo-II and OpenWrist [21], [23], allowing
the robot to be more relevant for assistance or rehabilitation
applications simulating ADLs. The design was also changed to

facilitate easy donning and doffing, making MOE well-suited
to be paired with other forms of physiological sensors and
actuators, such as EMG [29] or surface FES [11].

Impedance control and MPC were implemented and tested,
and each showcases a different use case for the robot.
Impedance control acts independently on each joint, and
is simple to use, allowing it to be easily implemented in
many different scenarios. However, in more complex control
scenarios between several actuation devices, intelligent sharing
cannot be achieved due to the simplicity. On the other hand,
MPC uses knowledge of the entire dynamic system, and can
integrate dynamic models from other novel technologies to
realize a truly coordinated control scheme. However, it is
difficult to create accurate cooperative dynamic models, and
takes significant computational power to implement.

For both control strategies, the simulation proved effective
at prototyping control gains and enabling similar position
accuracy between the sim and the physical robot; however,
the torque varied between the simulation and physical robot
to achieve the same position. Several factors could explain
the discrepancies between the model and the physical system,
such as unmodeled dynamics attributed to electrical cables
or simplification of complex components (e.g. motors and
encoders are currently modeled with uniform density).

If the user needs to understand the torque that will be
required very precisely, future work could improve the dy-
namic characterization of the robot to make it more closely
match the simulation. While friction and inertia were charac-
terized for each individual joint, the mass properties of each
physical component were estimated using SOLIDWORKS
based on built-in material properties. To fine-tune these values,



components could be physically measured to achieve better
agreement between the simulation and physical robot.

Because the dynamic equations of the robot were explicitly
developed, other model-based robot features could also be
easily implemented. Gravity compensation could be imple-
mented by providing a portion of the G(θ) vector, as shown in
Equation (1), as a feed-forward input to the robot. Likewise,
friction compensation could be implemented utilizing the
characterized friction parameters from Section III-A. Both of
these features would be useful in assistive and rehabilitation
applications, making assistance more consistent throughout the
workspace, and in passive, data-collection modes, where it can
allow the user to more easily backdrive the robot.

VII. CONCLUSION

The MAHI Open Exoskeleton (MOE) is a four DoF upper-
limb robot that was developed to address specific areas of
emphasis for future robotic rehabilitation paradigms. The
serial kinematic design simplifies the computational burden
for model-based control design. In parallel with the improved
hardware design, we developed a dynamic simulation and
software interface environment to facilitate development of
model-based control algorithms. An added feature of the new
robot design is ease of integration with hardware components
like sensors and electrodes necessary for combined robotic and
neuromodulation interventions.
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[28] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25–57, Mar 2006.

[29] C. G. McDonald, J. L. Sullivan, T. A. Dennis, and M. K. O’Malley,
“A myoelectric control interface for upper-limb robotic rehabilitation
following spinal cord injury,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 28, no. 4, pp. 978–987, 2020.


